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CHAPTER 1

Introduction

I have a lot of friends who are computer scientists and engineers, and
they are always asking me for books to learn more about music. Un-
fortunately, I have never found a good book to recommend. There are
good books out there, but they present things magically instead of logi-
cally and tend to be kind of patronizing.

Because music is an ancient art with more than 2500 years of recorded
data, it has a lot of baggage. Things like tetrachords that the Greeks
used more than 2500 years ago are still used today. This is good, but
sometimes it is difficult to separate what is natural (such as frequencies);
logical (such as the math used for transposition and inversion); from
what is the result of social conventions and usage over hundreds of years
(such as interval names). In this book, I clearly separate these three
things. If you are a nerd like me, you will find that you can learn the
natural and logical stuff pretty quickly.

I am heavily influenced by Hal Abelson and Jerry Sussman’s Structure
and Interpretation of Computer Programs (http://bit.ly/sicp-book), in
which they state that every powerful language has three mechanisms
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for combining simple elements to form more complex ideas:

• primitive expressions, which represent the simplest entities the
language is concerned with,

• means of combination, by which compound elements are built
from simpler ones, and

• means of abstraction, by which compound elements can be
named and manipulated as units.

In the same way that we can apply these mechanisms to programming,
I like to apply them to music. In fact, I use this idea in teaching both
computer science and music composition, and I find it very powerful.
We’ll explore some of these ideas in this book.

Another similar font of inspiration is the talk “Why Programming is
a Good Medium for Expressing Poorly Understood and Sloppily For-
mulated Ideas” by Gerald J. Sussman (http://bit.ly/why-programming)
in which he uses programming to teach electrical engineering. In this
book we will use programming to learn music.

We will see some music notation in this book, but don’t worry. If you
have never seenmusic notation before, read chapter Introduction toMu-
sic Notation in n Seconds or Less. If you don’t feel like learning music
notation at all, it’s no problem; you should be all right by reading the
text and code examples.

1.1 Getting Started

This book has quite a few code and audio examples. You can download
them at our resources webpage.

The sound examples in this book are in both MIDI and MP3 formats. I
used a high quality sampler library to generate the MP3s from MIDI, so
it should sound good.

To play theMIDI files you’ll create using the genmidimodule, you’ll need
a MIDI player. Windows and Ubuntu should play MIDI files by de-
fault when you double-click on them. On a Mac you may need to install
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QuickTime Player 7. Another option is to use a music notation pro-
gram. A music notation program may be useful even if you don’t know
how to read music, as it’ll help you spot crazy outputs. Musescore is
a free program (as in speech and beer) that runs on Linux, Mac, and
Windows. Finale is a commercial notation program for Windows and
Mac that is more polished than Musescore, but it’s expensive. Their trial
version is fully functional and works for 30 days.

1.2 Acknowledgments

This book would not be possible without the encouragement of many
people. I’d like to thank the nice folks who took my tutorial at the 2012
PyCon. The tutorial was based on an earlier draft of this book, and their
participation was essential in cleaning the material and inspiring me
to finish this book. I’d like to thank Vilson Vieira, Marcos Sampaio,
Alexandre Passos, and Tiago Vaz for their invaluable suggestions. Fi-
nally, I’d like to acknowledge Mara for her patience, love, and support.
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CHAPTER 2

Introduction to Music Notation in n Seconds or
Less

Music notation is both simple and complex, not unlike math notation.
In this chapter we’ll learn enough music notation to understand the ex-
amples in this book.

The first thing to know about music notation is that time is represented
from left to right while pitch is represented from bottom to top:

As you’d expect, there are symbols to represent different things. The
main symbols are the clef, the time signature, the note head, and the
stem, as you can see in the following image:
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& 44 œ œ œ œ

& 47 œ œ œ œ œ œ œ

? 44 œ œ œ œ&
t

&
46

46

œ œ œ œ œ œ? B B & †

œ œ œ œ œ œ

& 42 ˙ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

& 44 œ. œ> œ- œU
p f

[Title]
[Composer]

Score

time

pitch

clef

time staff

note head

stem
signature

slower faster

The time signature shows how many beats are in a measure and the note
value of the beat. For instance, in the previous image we have seven
beats (represented by the number 7) of quarter notes (represented by the
number 4). Naturally, we can subdivide a beat into smaller note values
(see section Note Value).

The actual pitch of a note is determined by the position of a note head
on the staff and the clef being used. Clefs solve the problem of cram-
ming 80+ notes into five lines. There are three kinds of clefs—G-clef,
F-clef, and C-clef—and they indicate the pitch name on a specific line.
For instance, the treble clef (the one used in the two previous images)
indicates that the second line from the bottom has the note G, while the
bass clef indicates that the fourth line from the bottom has the low F
note.

In the following image we can see six notes in the same graphical po-
sition in the top staff. Because each note occurs after a different clef,
they will represent different pitches. The arrows show the position of
each note on the piano, while the bottom staff shows where these notes
would be placed in the treble clef. The sub- and superscript eight in-
dicates that a note will sound one octave below or above than written,
respectively.
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The note shape and the number of beams (the horizontal lines connect-
ing two or more notes) indicate the note duration. In the following ex-
ample the notes have shorter duration as the music progresses (see sec-
tionNote Value). Unlike Python, but like the C programming language,
space is not significant, but it is used to make a score easy to read. No-
tice how the space between the first and second note is greater than the
space between the third and fourth note. This is because the first note is
longer than the third:
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slower faster

Finally, you may see symbols above or below a note such as a dot, a
greater than (>), a line, or a fermata (on the last note in the following
image). They are symbols of expression to tell the performer how the
note should be played. There are dozens of expression symbols, but we
don’t need to worry about them in this book:

& 44 œ œ œ œ

& 47 œ œ œ œ œ œ œ

? 44 œ œ œ œ&
t

&
46

46

œ œ œ œ œ œ? B B & †

œ œ œ œ œ œ

& 42 ˙ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

& 44 œ. œ> œ- œU
p f

[Title]
[Composer]

Score

time

pitch

clef

time staff

note head

stem
signature

slower faster
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In this chapter we had the shortest introduction tomusic notation in the
history of introductions, but this is pretty much all you need to know to
follow the music examples in this book.
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CHAPTER 3

The Primitives of Music

In this chapter we’ll see an overview of notes, intervals, and durations
and how to represent them in Python.

3.1 Notes

A note is a symbol representing a musical sound.

Pitch is the combination of a frequency in Hertz and a note name. For
instance, central A has a frequency of 440Hz. This combination is some-
what arbitrary. In the past, the frequency of central A would change
depending on the region. In some places, it was equal to 315Hz, for
example.

An octave is the interval between two pitches where their frequency has
a ratio of 2:1. For example, central A has a frequency of 440Hz and the
A one octave above has a frequency of 880Hz. “Two notes an octave
apart are in a sense alike, being different only in their relative registers
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and often seeming to blend into one another” (Drabkin, 2012). In most
cultures the two frequencies are perceived as the same pitch in different
registers. In the following image we have two octaves. Notice how the
pattern of black keys is repeated in each octave:

C C
261.5 Hz 523 Hz

C
1046 Hz

Octave Octave

There are many ways to divide an octave. In fact, octave division has
been an important component in music theory for 2500+ years. Today,
themost commonway to divide the octave is into 12 equal parts, the so-
called equal temperament. The equal temperament became prevalent in
the 18th century, and before that many others temperaments were used
(see section The Beautiful Math of Temperament Systems)

We could name these 12 notes any way we wanted. The geek in us would
like to have an array of 12 notes and access them with something like
notes[0], notes[1], and so on until notes[11] (as we can see in the fol-
lowing image). In fact, we’ll do something similar with integer notation.
(see section Integer Notation).

0

1

2

3

4 5

6

7

8

9

10

11

The ancient Greeks had many ways of dividing the octave. A specific di-
vision was called genos, and the plural genera. My favoritemusic-related
quote of all time is from Cleonides (1st century BCE): “In respect to
pitch, notes are infinite; in respect to function, there are eighteen in each

3.1. Notes 9
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genos” (Cleonides, 1998). The Greeks had a system with 18 notes, and
they used names for notes like proslambanomenos (“added note”) and
lichanos (“licking finger,” that is, forefinger). In this system some notes
are movable (that is, their intonation can change) while others are im-
movable. In the following figure we can see three genera: enharmonic,
chromatic, and diatonic. The immovable notes are in bold face and the
symbol ↑ is used for the enharmonic diesis, an interval with a ratio of
128/125 (see chapter A Look Inside the Primitives):

Greek music theory

The seven parts of the study of harmonics are notes, intervals, genera, scales, tonoi, modulation, and
melic composition.

notes

The Greek system had 18 notes (28 in the mixture of the genera), as Cleonides pointed out “In respect
to pitch, notes are infinite; in respect to function, there are eighteen in each genus.” [2]. Some notes
are movable and other are immovable (they don’t change in the differences of genera). In figure 1 the
immovable notes are in bold face. (The symbol ↑ is used for the enharmonic diesis)

en
ha
r.

ch
r.

di
at
.

Proslambanomenos A A A apycnoi
Hypate B B B barypycnoi
Parhypate B↑ c c mesopycnoi
Lichanos c c! d oxypycnoi
Hypate e e e barypycnoi
Parhypate e↑ f f mesopycnoi
Lichanos f f! g oxypycnoi
Mese a a a barypycnoi
Paramese b b b barypycnoi
Trite b↑ c’ c’ mesopycnoi
Paranete c’ c!’ d’ oxypycnoi
Nete e’ e’ e’ barypycnoi
Trite e↑’ f’ f’ mesopycnoi
Paranete f’ f!’ g’ oxypycnoi
Nete a’ a’ a’ apycnoi

Hypaton

Meson

Diezeugmenon

Hyperbolaion

Figure 1: Greater Perfect Scale

en
ha
rm
on
ic

ch
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at
ic

di
at
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ic

Proslambanomenos A A A apycnoi
Hypate B B B barypycnoi
Parhypate B↑ c c mesopycnoi
Lichanos c c! d oxypycnoi
Hypate e e e barypycnoi
Parhypate e↑ f f mesopycnoi
Lichanos f f! g oxypycnoi
Mese a a a barypycnoi
Trite a↑ b" b" mesopycnoi
Paranete b" b c’ oxypycnoi
Nete d’ d’ d’ apycnoi

Hypaton

Meson

Synemmenon

Figure 2: Lesser Perfect Scale

1

The use of the letters A to G to name notes is attributed to Boethius
in the sixth century. The use of the syllables ut, re, mi, fa, sol, la, and
si is attributed to Guido d’Arezzo as a mnemonic device using the first
letters of the hymn Ut queant laxis in which every phrase begins on a
successively higher note (fromC toA, see the following picture). In 1600
Giovanni Battista Doni suggested to replace ut with do to make it easier
to sing, and to add si (from the initials for Sancte Johannes) to complete
the diatonic scale. However, other syllables have been proposed in the
late 1500s, such as be, ce, di, ga, la, mi, and ni by Waelrant and la, be,
ce, de, me, fe, and ge by Hitzler (McNaught, 1893). I’m glad these two
systems didn’t prevail or we would be singing in baby talk today.

3.1. Notes 10
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If these last paragraphs look dense it is because I’m trying to cram 2000+
years of history into a couple paragraphs (silly me). But the main point
here is that there’s nothing magical about the way notes are named; it’s
more a historical accident than anything else. Speaking of accidents, we
should segue to accidentals.

3.2 Accidentals

Youmust be asking, if we divide the octave in twelve parts and they used
seven letters (A to G) or names (ut to si), how do we name the other five
notes?

We take one of the seven note names, such as C, and add an accidental;
a sign that raises or lowers a pitch one or more semitones. A semitone is
the smallest interval used in Western tonal music. The flat (b) lowers a
semitone and the sharp (#) raises a semitone. Apiano keyboard is a good
way to visualize the notes. On the white keys you have the seven notes,
from A to G. On the black keys you have the five notes with accidentals:

C D E F G A B

C# D#
♭E

C

D♭

Do Re Mi Fa Sol La Si

F# G# A#
G A B♭ ♭♭

3.2. Accidentals 11
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I hope the picture below helps you understand how accidentals work.
C# (note 2) is a semitone higher than C (note 1), C## (C double sharp,
note 3) is two semitones higher than C, and C### (C triple-sharp, note
4) is three semitones higher than C. Likewise, Bb is one semitone lower
than B, Bbb (B double-flat) is two semitones lower than B, and so on (see
section Integer Notation for a Python implementation).

C

C#

C##

C###

In theory you can have as many accidentals you want, but in practice we
use at most two. There are a few examples of triple-sharps and triple-
flats in the literature, but they are quite rare (You can find them in the
works of Charles-Valentin Alkan and Max Reger).

If you think this is more complicated than it should be, it is! It’d bemuch
easier if each of the 12 notes had a different name. But as with many
things in music, the way we name notes evolved from the medieval pe-
riod when they used six notes (hexachords) and sets with seven notes
(scales), and deviations from these systems where marked as “acciden-
tals.” The other five notes were added gradually to “correct” dissonant
intervals such as the tritone from F to B (if you change B to Bb you have
a perfect fourth). See sections Intervals and IntervalNames to learnmore
about intervals and to see how we can implement them in Python.

Also remember that they didn’t have a full vision of a 12 notes system.
Hell, they didn’t even have keyboards! Their system was more complex,
but inmany waysmore colorful, since each scale had its own intonation.
To go into more detail is out of the scope of this book, but Wikipedia’s
entry on musical mode is pretty good.

To summarize, there are many ways to name the notes. On a modern,
12-tone equal temperament we use these names:

3.2. Accidentals 12
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n Name Other Names
0 C B#, Dbb
1 C#, Db
2 D Ebb
3 D#, Eb
4 E Fb
5 F E#, Gbb
6 F#, Gb
7 G Abb
8 G#, Ab
9 A
10 A#, Bb Cbb
11 B Cb

3.3 Integer Notation

It’s common to use integers to represent pitches, and it works really well
with equal temperament. Every note in the octave is represented by an
integer from 0 to 11 (C to B). This system wraps around 12, just like
a 24-hour clock. For instance, 14 and 2 represent the note D, just like
14:00 is the same as 2 p.m.

It’s straightforward to implement a mod12 function with Python:

def mod12(n):

return n % 12

And it’s equally easy to implement a simple function to show a note
name given an integer:

def note_name(number):

notes = ”C C# D D# E F F# G G# A A# B”.split()

return notes[mod12(number)]

>>> note_name(0)

>>> C

>>> note_name(1)

>>> C#

3.3. Integer Notation 13
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>>> note_name(13)

>>> C#

>>> note_name(3)

>>> D#

In this function we are limited to showing only sharps (and we could
change it to show only flats). To have a more intelligent program ca-
pable of distinguishing sharps and flats we need a more elaborate pitch
encoding than this base-12 system. For an example of such encoding,
see “A Base-40 Number-line Representation of Musical Pitch Notation”
by Walter B. Hewlett.

As we saw, a sharp raises a note by a semitone while a flat lowers it by
the same amount. If C = 0, then C# = 1, C## = 2, C### = 3, and so on.

A quick way to calculate the number that represents a note (for instance,
C###) is to separate the note name from the accidentals (C and ### in
our example), get the integer that represents the note name without the
accidentals (C = 0), count the number of accidentals, add a plus signal
if the accidentals are sharps or a minus if they are flats, and sum the
note number with the accidentals. You can see a naive implementation
below:

def accidentals(note_string):

acc = len(note_string[1:])

if ”#” in note_string:

return acc

elif ”b” in note_string:

return -acc

else:

return 0

def name_to_number(note_string):

notes = ”C . D . E F . G . A . B”.split()

name = note_string[0:1].upper()

number = notes.index(name)

acc = accidentals(note_string)

return mod12(number + acc)

This is how name_to_number works:

3.3. Integer Notation 14
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>>> name_to_number(”C#”)

>>> 1

>>> name_to_number(”Db”)

>>> 1

>>> name_to_number(”Ebb”)

>>> 2

>>> name_to_number(”B#”)

>>> 0

This function, of course, won’t work with crazy inputs such as “C#b#”,
but most (sane) musicians will argue that notes like “C#b#” “don’t exist.”
The hacker in you may want to define a function where this works, as an
exercise. What is the integer representation of C#b#? I think it’s fair to
say it should be 1 (the same as C#), since the flat will cancel one of the
sharps.

Exercise 1. Extend the function name_to_number to deal with notes with
mixed flats and sharps

Exercise 2. Change the function name_to_number to useHewlett’s base-40
system.

So, why this funny business about having an arbitrary number of acci-
dentals? The short answer is, except in equal temperament, notes like
C# and Db are different, that is, they have different frequencies (see sec-
tionThe Beautiful Math of Temperament Systems). Another explanation
has to do with tonal theory. In some cases it is preferable to write [D#,
C##, D#] instead of [D#, D♮, D#], even on a keyboard, because C## is
the leading tone of D#. Another way of saying this is that C## is part of
the scale of D# major, while D♮ is not.

Composers like Chopin and Tchaikovsky used double sharps and flats,
and any professional musician must be able to read them.

3.4 Octaves

There are many ways to represent pitch and octave. One is to pack them
as a single integer, likeMIDI, in the format 12o+p, where o is the octave

3.4. Octaves 15
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and p is the pitch. In MIDI, every note on a keyboard is represented by
a number from 0 to 127, therefore 0 represents C in the first octave, 12
represents C in the second octave, and so on. Similarly, 1, 13, and 25
represent C# on the first, second, and third octaves. The first octave is
the one where C has the frequency of 16.352Hz (the lowest note onmost
pianos is an A in the same octave with a frequency of 27.5Hz). In MIDI,
60 is central C ((5 ∗ 12) + 0 = 60) and 62 is central D ((5 ∗ 12) + 2 =
62). It’s good to know that in some countries the central octave is 3 or
4 instead of 5. In those systems the lowest octaves will have negative
numbers such as -1 and -2. Yuck.

The Python function divmod provides an easy way to get the octave and
pitch number of a midi note:

>>> divmod(62, 12)

>>> (5, 2)

Another way is to define a note as an object and have separate attributes
for pitch value and octave. We’ll do this in chapter Rests and Notes as
Python Objects.

3.5 Note Value

In music notation the relative duration of a note is represented by the
note’s shape, with the next note in the duration table having half the
value of the preceding note. For instance, if a half note lasts 1 second,
a quarter note will last 0.5 seconds. The mathematics of note values is
simple and beautiful (as usual), and the naming is ugly and confusing
(as usual).

Even if I’m not American, I prefer the American way of using half, quar-
ter, eighth, and so on for notes values. I think it’s more logical and eas-
ier to remember. In other languages, each note value has a name that is
not always the same across different languages. For instance, a quarter
note is called “black” in French (noire) and Spanish (negra) but semi-
nima in Italian and Portuguese. Don’t even start with the British names
like “Quasihemidemisemiquaver” (128th). In the following table we can
see all note values and durations:

3.5. Note Value 16
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Note Name Duration

longa 4

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

double whole note (breve) 2

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

whole note 1

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

half note 1/2

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

quarter note 1/4

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

eighth note 1/8

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

sixteenth note 1/16

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

thirty-second note 1/32

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ

sixty-fourth note 1/64

W
w
˙
œ

Jœ

Rœ

RÔœ

RÔÔœ
RÔÔÔœ hundred twenty-eighth note 1/128

We can know the duration in seconds of a note only if we have a tempo
in beats per minutes (BPM). For instance, in the following image, the
tempo marking of ♩ = 60 tells us that it should have 60 quarter notes per
minute, or consequently, that each quarter note should last 1 second.
Similarly, the marking of ♩ = 90 indicates that it should have 90 quarter
notes per minute, or that each quarter note should last 0.66666 seconds.
In this example, if a quarter note lasts 0.6666, a half note should be the
double of that time (1.3333s) and a eighth note half of it (0.333333).

44 44 42˙ œ œ
q = 60 

˙ œ œ
q = 90

42 44

3

œ œ œ œ œ œ œ œ
x = 120 œ œ œ œq = 120 œ œ œ œ

6 ! ! ! ! ! ! ! ! ! ! !
17 ! ! ! ! ! ! ! ! !
26 ! ! ! ! !

[Title]
[Composer]

Score

A B

C DTo calculate the duration in seconds of a noteweuse the formula 60n/vt,
where n is the note value, v is the note value of the tempo (“quarter”, as
in ♩ = 90), and t is the tempo itself.

The function note_duration returns the time in seconds a note value has
in a specific tempo:

def note_duration(note_value, unity, tempo):

return (60.0 * note_value) / (tempo * unity)
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We can see the result for the examples we mentioned before (I’m using
from __future__ import division):

>>> note_duration(1/4, 1/4, 90)

>>> 0.666666666667

>>> note_duration(1/2, 1/4, 90)

>>> 1.33333333333

>>> note_duration(1/8, 1/4, 90)

>>> 0.333333333333

I hope it’s easy to see that in the following image the bars marked with C
and D will sound exactly the same, even if they use different note values
(sixteenth and quarter notes, respectively):

44 44 42˙ œ œ
q = 60 

˙ œ
q = 90

42 44

3

œ œ œ œ œ œ œ œ
x = 120 œ œ œ œq = 120 œ œ œ œ

6 ! ! ! ! ! ! ! ! ! ! !
17 ! ! ! ! ! ! ! ! !
26 ! ! ! ! !

[Title]
[Composer]

Score

A B

C D

The utility function durations returns the duration in seconds of a list of
note values:

def durations(notes_values, unity, tempo):

return [note_duration(nv, unity, tempo) for nv in notes_values]

>>> durations([1/2, 1/4, 1/8], 1/4, 60)

>>> [2.0, 1.0, 0.5]

>>> durations([1/2, 1/4, 1/8], 1/4, 120)

>>> [1.0, 0.5, 0.25]

>>> durations([1/2, 1/4, 1/8], 1/4, 90)

>>> [1.3333333333333333, 0.6666666666666666, 0.3333333333333333]

Sometimes a note value can have a dot that will increase the total dura-
tion by half of the original note value. For instance, ♩ has the value of
1/4, while ♩. has the value of 1/4 + 1/8 = 3/8. Each dot increases the total
value by half of the previous value: ♩.. = 1/4 + 1/8 + 1/16 = 7/16. To get
the total value we can use the formula for the sum of a geometric series:

n�1X

k=0

ark = a
1� rn

1� r

Where a is the first term of the series and r is the common ratio. Having
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the formula, the implementation in code is straightforward (I’m using
Python’s class Fraction from the module fractions):

def dotted_duration(duration, dots):

ratio = Fraction(1, 2)

return duration * (1 - ratio ** (dots + 1)) / ratio

>>> dotted_duration(Fraction(1,4), 0)

>>> 1/4

>>> dotted_duration(Fraction(1,4), 1)

>>> 3/8

>>> dotted_duration(Fraction(1,4), 2)

>>> 7/16

Exercise 3. Create a function music_duration to calculate the total dura-
tion inminutes of a composition. This function accepts four parameters:
the time signature as a string, the number of bars, the reciprocal of the
note value of the tempo (for example, use 4 if the note value is a quarter),
and the tempo itself. It assumes that the tempo and time signature of a
composition won’t change. To find the duration of 10 bars in a compo-
sition that has a time signature of “4/4” and a tempo marking of ♩ = 60,
you’d have the following function call: music_duration(”4/4”, 10, 4,

60).

3.6 Some Music Operations

In this section we are going to see a simple library to represent music
notes (the module simplemusic in pyknon). In chapter Rests and Notes
as PythonObjectswe’ll use music, an object-orientedmodule that ismore
complete. In simplemusic notes are represented as numbers, and a set of
notes is represented as a Python iterable (usually a list).

3.6.1 Intervals

Mathematically, a musical interval is the difference in semitones be-
tween two notes. Intervals can also be represented with integers:
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def interval(x, y):

return mod12(x - y)

We can see that the interval from D to E is 2 semitones and from E to D
is 10 semitones:

>>> interval(2, 4)

>>> 10

>>> interval(4, 2)

>>> 2

The reason that the same notes in different order will have different in-
tervals has to do with direction. There are 2 semitones from D to the
next E:

C C# D D# E F F# G G# A A# B
2

If we follow the same direction, there are 10 semitones from E to the
next D:

C C# D D# E F F# G G# A A# B C C# D
10

If we change the direction we need to change the signal, so we have -2
semitones from E to the previous D:

-2
C C# D D# E F F# G G# A A# B

And, of course, -2 mod 12 is 10.

These two intervals (fromD to E and from E toD) are complements and
their sum is always 12. For instance:

>>> interval(3, 7)

>>> 8

>>> interval(7, 3)

>>> 4

See section Interval Names for an Python implementation of interval
names such as “minor third” and “perfect fifth”.
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3.6.2 Transposition

Music transposition is an operation that shifts a set of notes up or down
by a constant interval. Mathematically, transposition is the sum of each
note in a group of notes by a transposition index:

def transposition(notes, index):

return [mod12(n + index) for n in notes]

>>> scale = [0, 2, 4, 6, 8, 10]

>>> [0, 2, 4, 6, 8, 10]

>>> notes_names(scale)

>>> [’C’, ’D’, ’E’, ’F#’, ’G#’, ’A#’]

>>> transposition(scale, 3)

>>> [3, 5, 7, 9, 11, 1]

>>> notes_names(transposition(scale, 3))

>>> [’D#’, ’F’, ’G’, ’A’, ’B’, ’C#’]

3.6.3 Retrograde

Retrograde is the reverse of a group of notes and it’s straightforward to
implement in Python:

def retrograde(notes):

return list(reversed(notes))

>>> scale = [0, 2, 4, 6, 8, 10]

>>> [0, 2, 4, 6, 8, 10]

>>> retrograde(scale)

>>> [10, 8, 6, 4, 2, 0]

3.6.4 Rotation

Rotation is an useful operation inmusic. The following function accepts
an iterable and a rotation index as arguments:
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def rotate(item, n=1):

modn = n % len(item)

return item[modn:] + item[0:modn]

>>> scale = [0, 2, 4, 6, 8, 10]

>>> [0, 2, 4, 6, 8, 10]

>>> rotate(scale, 3)

>>> [6, 8, 10, 0, 2, 4]

We can see rotation in action in medieval modes where each mode is a
rotation of the other:

>>> dorian = ”D E F G A B C”.split()

>>> [’D’, ’E’, ’F’, ’G’, ’A’, ’B’, ’C’]

>>> phrygian = rotate(dorian)

>>> [’E’, ’F’, ’G’, ’A’, ’B’, ’C’, ’D’]

>>> lydian = rotate(phrygian)

>>> [’F’, ’G’, ’A’, ’B’, ’C’, ’D’, ’E’]

>>> mixolydian = rotate(lydian)

>>> [’G’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’]

3.6.5 Inversion

Inversion is used a lot in music, and, as many things in music, it has
different meanings.

Chord inversion is actually a rotation where the lowest note of a chord
changes according to the rotation:

& 43 44œœœ œœœ œœœ

& 442
œ œb œb œ œ œ œ œ

&4 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

&27 ! ! ! ! !

[Title]
[Composer]

Score

+3 -2 +4 -3 +2 -4
>>> rotate([0,4,7], 0)

>>> [0, 4, 7]

>>> rotate([0,4,7], 1)

>>> [4, 7, 0]

>>> rotate([0,4,7], 2)

>>> [7, 0, 4]
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The inversion of a melody is different. The direction of the original in-
tervals is changed in the opposite direction. For example, if a melody
has the intervals +3, -2, +4 (see picture below), its inversion will have
the intervals -3, +2, -4. Hence, the inversion of [C, Eb, Db, F] is [C, A,
B, G]:

& 43 44œœœ œœœ œœœ

& 442
œ œb œb œ œ œ œ œ

&4 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

&27 ! ! ! ! !

[Title]
[Composer]

Score

+3 -2 +4 -3 +2 -4

This mirroring operation is known as reflection in mathematics. It’s
easy to grasp the main concept if you think of the set of notes inverted
through an axis. In the following images we can see every inversion for
the set of notes a = [11, 10, 7] (the inversions are in red or as a dotted
line, depending on your edition). The first image has the inversion of a
when the inversion index is equal to 0, the second image has the inver-
sion of a when the inversion index is equal to 1, and so on until the last
image, when the inversion index is equal to 11:
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It’s important to notice that the inversion index doesn’t correspond to
notes or intervals in the integer notation. Because the inversion axis is
0 in the first image, you may think the note 0 is the inversion axis. But
in the second image, the axis is 0.5.

By the way, I generated the images above using the function plot.plot2 in
pyknon. It’s a handy function to inspect inversions visually. Also, the list
of notes doesn’t have to be sequential; you can use any order you want.
In the following image I’m plotting the set of notes [1, 3, 7, 9, 4] and its
inversion:

The following function computes the inversion of a list of notes through
an inversion index:

def inversion(notes, index=0):

return [mod12(index - n) for n in notes]

We can, indeed, verify that the inversion of [11, 10, 7] is [1, 2, 5] when
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the inversion index is 0:

>>> inversion([11, 10, 7], 0)

>>> [1, 2, 5]

As with any reflection, music inversion is an involution; its inverse func-
tion is itself. It’s actually an easy concept, but if you want to see some
confused music students, go to a classroom and say “the inverse func-
tion of an inversion is the inversion.” Of course, it’s easy to see this in
code:

>>> chord = [0, 4, 7]

>>> [0, 4, 7]

>>> chord == inversion(inversion(chord))

>>> True

To be honest, musicians don’t think of inversion through an axis very of-
ten; it’s much more common and simpler to think of an inversion start-
ing with a note (as in “the inversion of [D, F#, G] starting with A”). The
following utility function combines transposition and inversion to im-
plement that:

def inversion_startswith(notes, start):

transp = transposition_startswith(notes, 0)

return transposition_startswith(inversion(transp), start)

>>> inversion_startswith([0, 3, 1, 5], 3)

>>> [3, 0, 2, 10]

3.6.6 Interval Names

Because music since the 1600s evolved from scales, tonalities, and tem-
perament systems, the naming of intervals is a little bit weird. We’ll see
in chapter A Look Inside the Primitives that the same interval such as a
minor third can have different sizes (in Hertz) according to the tuning
system.

An interval namehas a quantity such as “second”, or “third”, and a quality
such as “perfect,” “major,” or “minor.” The following table summarizes
the qualities an interval can have:
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Quantity Quality
Unison, Fourth, Fifth Diminished, Perfect, Augmented
Second, Third, Sixth,
Seventh

Diminished, Major, Minor,
Augmented

So how come some intervals are “perfect” while others are “minor” and
“major”? There are many ways to explain this, none of them fully sat-
isfactory. The ancient Greeks used a system with four notes (a tetra-
chord) where the outer notes (forming an interval of a perfect fourth)
were immutable (and therefore “perfect”) and the inner notes were mu-
table. Another way of explaining this is that both minor and major in-
tervals are considered consonant, but if you raise or lower an unison, a
fourth, or a fifth you’ll get intervals that were considered dissonant.

You can see in the following table a list of the main intervals. Also,
Wikipedia’s entry on interval is good.

semitones notes name
0 C–C perfect unison
1 C–Db minor second
2 C–D major second
3 C–Eb minor third
4 C–E major third
5 C–F perfect fourth
6 C–F# augmented fourth
6 C–Gb diminished fifth
7 C–G perfect fifth
8 C–Ab minor sixth
9 C–A major sixth
10 C–Bb minor seventh
11 C–B major seventh

Let’s write a Python function interval_name that returns the interval
name between two notes. This is how it works:

>>> interval_name(”C”, ”Db”)

>>> Minor Second

>>> interval_name(”Eb”, ”C#”)

>>> Augmented Sixth

Wedefine name_to_diatonic to get the “diatonic” integer notation. It’s the
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number representation of a note, disregarding accidentals in a diatonic
(C major) scale:

def name_to_diatonic(note_string):

notes = ”C D E F G A B”.split()

name = note_string[0:1].upper()

return notes.index(name)

>>> name_to_diatonic(”C”)

>>> 0

>>> name_to_diatonic(”C#”)

>>> 0

>>> name_to_diatonic(”Db”)

>>> 1

>>> name_to_diatonic(”D”)

>>> 1

We use the function name_to_number that we defined earlier (in section
Integer Notation) to get the integer representation of the notes. Let’s see
the implementation for interval_name:

def interval_name(note1, note2):

quantities = [”Unison”, ”Second”, ”Third”, ”Fourth”, ”Fifth”, ”Sixth”, ”Seventh”]

n1, n2 = name_to_number(note1), name_to_number(note2)

d1, d2 = name_to_diatonic(note1), name_to_diatonic(note2)

chromatic_interval = interval(n2, n1)

diatonic_interval = (d2 - d1) % 7

quantity_name = quantities[diatonic_interval]

quality_name = get_quality(diatonic_interval, chromatic_interval)

return ”%s %s” % (quality_name, quantity_name)

With name_to_number and name_to_diatonicwe can have a chromatic and
a diatonic interval. The diatonic interval is used to get the interval’s
quantity by a simple list lookup. Because the result of name_to_diatonic
is the position of a note name (without accidentals) in a diatonic scale,
the diatonic interval will correspond to a generic interval such as “third”
or “fourth,” but without any quality (such as “major” or “perfect”). Fi-
nally, we get the interval’s quality with get_quality:

def get_quality(diatonic_interval, chromatic_interval):

if diatonic_interval in [0, 3, 4]:
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quality_map = [”Diminished”, ”Perfect”, ”Augmented”]

else:

quality_map = [’Diminished’, ’Minor’, ’Major’, ’Augmented’]

index_map = [-1, 0, 2, 4, 6, 7, 9]

try:

return quality_map[chromatic_interval - index_map[diatonic_interval]]

except IndexError:

raise SimpleMusicError(”Sorry, I can’t deal with this interval :-(”)

As we have seen, there are two classes of interval quality: the ones
that can be perfect, and the ones that can be minor or major. The
chromatic interval is enough to determine the interval quality, so qual-

ity_map[chromatic_interval] should be sufficient. But since quality_map
has only three or four elements, and the value for chromatic_interval can
go up to 11, we need to scale its value according to index_map.

Let’s see how this works with a couple examples. If the notes are C
and Db, the value for chromatic_interval is 1 (it has one semitone) and
the value for diatonic_interval is 1 (it’s the second item in the diatonic
scale). Therefore, the result of index_map[1] is 0, and we end up with
quality_map[1 - 0] that evaluates to “minor.”

If the notes areC and Fb, the value for chromatic_interval is 4 (it has four
semitones) and the value for diatonic_interval is 3 (it’s the fourth item
in the diatonic scale). The result for index_map[3] is 4 and quality_map[4

- 4] is “diminished,” which is expected since the interval between C and
Fb is a diminished fourth.

The function interval_name will work with all basic intervals (minor,
major, perfect, augmented, and diminished) with the exception of the
augmented seventh. The reason is that the augmented seventh has the
same size in semitones as the octave, but since we’re using mod12, the
value for chromatic_interval is 0 instead of 12. We could fix it with the
following code:

chromatic_interval = 12 if chromatic_interval == 0 else chromatic_interval

but this would break when the interval is a unison. We could fix it with
something like:
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chromatic_interval = 12 if chromatic_interval == 0 else chromatic_interval

index = (chromatic_interval - index_map[diatonic_interval]) % 12

return quality_map[index]

But this is ugly as hell, and the fact that we are dealing with two excep-
tions tell us that we need a better mathematical abstraction. In produc-
tion I wouldn’t use themod12 integer notation for tonal intervals. I’d use
a system that can differentiate flats and sharps such as (Hewlett, 1992)
or (Brinkman, 1982). On the other hand, interval_name and get_quality

are good for teaching and demonstrating because theymimic how amu-
sician may think about intervals.

Exercise 4. Extend the function get_quality to deal with doubly aug-
mented and doubly diminished intervals such as Eb–F## and E–Cbb.

Exercise 5. Read (Hewlett, 1992) and implement a function to return
the interval name using his numerical system.

3.6.7 Simple combinations

In the chapter Means of Combination we’ll explore how to make inter-
esting examples (for same value of interesting) using the combination of
these primitives and operations. For now, let’s have a taste by combining
a motif with its inversion, transposition, and retrograde:

>>> motif = [0, 1, 7, 3]

>>> [0, 1, 7, 3]

>>> a = inversion_startswith(motif, 11)

>>> [11, 10, 4, 8]

>>> b = transposition_startswith(motif, 5)

>>> [5, 6, 0, 8]

>>> c = retrograde(transposition(motif, 1))

>>> [4, 8, 2, 1]

>>> motif + a + b + c

>>> [0, 1, 7, 3, 11, 10, 4, 8, 5, 6, 0, 8, 4, 8, 2, 1]

We concatenate the result in one big list of notes. It doesn’t sound very
impressive, but if we change octaves and duration, the same list of notes
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will sound much better:

& 43 .œ Jœb œ œb .œ jœ# œ# œ .œ jœb œ œb œb œ œ œ#

[Title]
[Composer]

Score

Original Inversion Transposition
Retrograde
Transposition

Track 1. Simple combination. Youmay notice that the order of the notes
number 13 and 14 on the sheet music are swapped in respect to the orig-
inal list. That is, the first two notes in the last bar should’ve been E and
Ab instead of Ab and E. This is to show that we don’t need to follow the
same order rigorously, and by swapping the two notes we get to repeat
the Ab from the previous bar, which helps to make the phase smoother.
See also Exercise 17 for another example of “wrong notes”.
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CHAPTER 4

Rests and Notes as Python Objects

The Python library pyknon generates music in a hacker-friendly way.
We’ll use this library to generate the examples in this book. You can
download it at http://kroger.github.com/pyknon.

It’s a library intended for teaching and demonstrating, so you
should have no problems reading the source code. On the other
hand, it doesn’t do a lot of checking, so it’s easy to break (and
if you break it, you buy it). If you find bugs, please report at
https://github.com/kroger/pyknon/issues.

We’ll use the music module inside pyknon to describe musical notes and
rests as Python objects. It uses Mark Conway Wirt’s MIDIUtil library
to generate MIDI files (it’s included in pyknon). The module music has
three basic classes, Note, Rest, and NoteSeq. See section About MIDI to
learn more about the MIDI format.
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4.1 Rest

Rest is a very simple class. It has only one attribute:

dur

the duration value as float point (quarter is 0.25 since 1/4 = 0.25).

And it has only one method:

stretch_dur(factor)
Multiplies the duration by factor and returns a new Rest with the
resulting duration.

4.2 Note

The class Note has six attributes and accepts the following attributes as
keyword arguments: value, octave, dur, and volume.

value

the integer value for a note, from 0 to 11.

octave

the octave value where the central octave is 5.

midi_number

returns the MIDI value for the pitch. That is, value + (octave *
12). This attribute is read-only.

dur

the note value as float point (quarter is 0.25 since 1/4 = 0.25).

volume

MIDI volume value from 0 to 127.

verbose

returns a string in the format <note>, <octave>, <duration>.

For example, to instantiate a loud middle C with a duration of a quar-
ter you could write Note(value=0, octave=5, dur=0.25, volume=127) or
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Note(0, 5, 0.25, 127). Note has the following defaults: value=0, oc-
tave=5, dur=0.25, volume=100. Therefore, Note() will return a middle
C with a duration of a quarter and volume of 100db:

>>> a = Note()

>>> <C>

>>> a.octave

>>> 5

>>> a.value

>>> 0

>>> a.volume

>>> 100

>>> a.dur

>>> 0.25

>>> a.midi_number

>>> 60

You can instantiate a Note using a shorthand notation. Besides num-
bers, you can pass a string as the first argument in the format “<note
name> <duration> <octave>” (the second two arguments are optional).
For instance: Note(”C4’”).

In this case, the duration is the reciprocal of the note value (that is, 1/4
becomes 4) and octave is either a number of single quotes or commas.
There’s a catch. If you enter a duration using the string argument you
should use the reciprocal value we just saw, but if you use the dur at-
tribute directly you should use float points such as 0.25 for quarter notes.
The reason to use the reciprocal of the duration is thatmanymusic pack-
ages such as Humdrum and Lilypond do that. It’s a nice shorthand no-
tation.

Thenumber of single quotes indicates the octavewith respect to the cen-
tral octave, where one quote is the central octave, two quotes one octave
above the central octave, and so on. The number of commas works in
the opposite way: one comma is one octave below the central octave,
two commas are two octaves below and so on. It sounds more compli-
cated than it really is.

Note prints its value in the format <note name>. It’s spartan, but it’s good
when you have a lot of notes (to keep things short). If you want a more
descriptive name, you can use the verbose property:
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>>> Note(2)

>>> <D>

>>> Note(”D#”)

>>> <D#>

>>> Note(”Eb8’’”)

>>> <D#>

>>> Note(”F#,”).verbose

>>> <Note: 6, 4, 0.25>

>>> Note(”C#”, dur=2)

>>> <C#>

Exercise 6. Create some Note objects in the Python interpreter. Use both
the regular and shorthand notations.

Note has four methods, transposition, inversion, stretch_dur, and har-

monize, but you are more likely to use these methods in a NoteSeq than
in a single Note.

transposition(index)
Transposes a Note by a given index in semitones and returns a new
Note.

>>> d = Note(”D”)

>>> <D>

>>> d.transposition(3)

>>> <F>

inversion(index=0, initial_octave=None)
Inverts a Note through an inversion index and returns a new Note.

>>> d = Note(”D”)

>>> <D>

>>> d.inversion()

>>> <A#>

>>> d.inversion(initial_octave=8)

>>> <A#>

stretch_dur(factor)
Multiplies the duration by factor and returns a new Note with the
resulting duration.
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>>> d = Note(”D”)

>>> <D>

>>> d.dur

>>> 0.25

>>> d1 = d.stretch_dur(2)

>>> <D>

>>> d1.dur

>>> 0.5

>>> d2 = d.stretch_dur(0.5)

>>> <D>

>>> d2.dur

>>> 0.125

harmonize(scale, interval, size)
Harmonize a single note in the context of a scale. Not very useful
by itself, but it’s used by NoteSeq.

scale

A set of notes as a NoteSeq.

interval

The interval in the scale between each note (for example, 3
for thirds, 4 for fourths, and so on). The default is 3.

size

The number of notes in the chord. The default is 3.

4.3 NoteSeq

NoteSeq is a list-like object that can contain multiple Note and Rest ob-
jects and nothing more. You can use slices and methods like append and
insert, just like a Python list.

You can enter the collection of Note and Rest objects manually:

>>> NoteSeq([Note(0), Rest(1), Note(”C#8”)])

>>> <Seq: [<C>, <R: 1>, <C#>]>

Or you can use a shorthand notation as a string argument where each
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Note or Rest is separated by spaces and a Rest is represented by an R.
The format string for a individual note is the same shorthand used to
instantiate a Note:

>>> NoteSeq(”C R C#8”)

>>> <Seq: [<C>, <R: 0.25>, <C#>]>

Here are some more examples:

>>> NoteSeq(”C#2’ D#4’’”)

>>> <Seq: [<C#>, <D#>]>

>>> NoteSeq(”C# D#”)

>>> <Seq: [<C#>, <D#>]>

>>> NoteSeq(”C8 D E4 F”)

>>> <Seq: [<C>, <D>, <E>, <F>]>

>>> NoteSeq([Note(0), Note(2)])

>>> <Seq: [<C>, <D>]>

>>> NoteSeq([Note(0, 5), Note(2, 5)])

>>> <Seq: [<C>, <D>]>

>>> NoteSeq([Note(1, 5, 2), Note(3, 6, 1)])

>>> <Seq: [<C#>, <D#>]>

>>> NoteSeq([Note(1, dur=0.5), Note(3, dur=1)])

>>> <Seq: [<C#>, <D#>]>

The default value for duration is 4 (quarter note) and for octave is ’ (sin-
gle quote, central octave). If the duration and/or octave of a note is not
defined, it will use the value of the previous note. Here’s a quick way to
have a bunch of eighth notes:

>>> a = NoteSeq(”C8 D E F”)

>>> <Seq: [<C>, <D>, <E>, <F>]>

>>> [x.dur for x in a]

>>> [0.125, 0.125, 0.125, 0.125]

It seems laborious to use the Note and Rest objects in a NoteSeq when
you have the string shorthand, but it can be particularly useful when
generating a NoteSeq from Python code. In the following example we
generate a NoteSeq with the whole-tone scale:

>>> NoteSeq([Note(x) for x in range(0, 12, 2)])

>>> <Seq: [<C>, <D>, <E>, <F#>, <G#>, <A#>]>
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Finally, you can instantiate a NoteSeq by passing a filename as an ar-
gument in the format file://<filename>. The content of the filename
should be notes and rests separated by spaces just like the string short-
hand. Newline characters don’t count, and you can use them to make
the file more readable. Let’s say we have a file called “notes” with the
following content:

C4 D8 E

F2

G4 A4

We can read it with the following code:

>>> NoteSeq(”file://code-example/notes”)

>>> <Seq: [<C>, <D>, <E>, <F>, <G>, <A>]>

All the music operations we defined in section Some Music Operations
are now methods in NoteSeq. For example, to calculate the inversion of
a sequence:

>>> seq = NoteSeq(”C E G”)

>>> <Seq: [<C>, <E>, <G>]>

>>> seq.inversion()

>>> <Seq: [<C>, <G#>, <F>]>

Like a regular Python list, you can concatenate multiple NoteSeq using
the + operator:

>>> NoteSeq(”C D E”) + NoteSeq([Note(5)])

>>> <Seq: [<C>, <D>, <E>, <F>]>

And you can repeat a NoteSeq by multiplying it by a number:

>>> NoteSeq(”C D E”) * 3

>>> <Seq: [<C>, <D>, <E>, <C>, <D>, <E>, <C>, <D>, <E>]>

These are the main methods in NoteSeq:

retrograde()

Returns a new NoteSeq with the order of items reversed.

transposition(index)
Returns a new NoteSeq with the notes transposed by a transposi-

4.3. NoteSeq 37



Music for Geeks and Nerds

tion index, in which the index is an integer. It’ll transpose only
the notes and leave the rests untouched.

>>> a = NoteSeq(”C4 D8 R E”)

>>> <Seq: [<C>, <D>, <R: 0.125>, <E>]>

>>> a.transposition(3)

>>> <Seq: [<D#>, <F>, <R: 0.125>, <G>]>

transposition_startswith(note_start)
Transpose a NoteSeq in a way that the transposed sequence will
start with note_start. The argument note_start can be a Note or
an integer representing a pitch from 0 to 11.

>>> a = NoteSeq(”C4 D8 R E”)

>>> <Seq: [<C>, <D>, <R: 0.125>, <E>]>

>>> a.transposition_startswith(Note(3))

>>> <Seq: [<D#>, <F>, <R: 0.125>, <G>]>

>>> a.transposition_startswith(3)

>>> <Seq: [<D#>, <F>, <R: 0.125>, <G>]>

inversion(index=0)
Returns a new NoteSeq with the notes inverted by an inversion in-
dex. I think the method inversion_startswith is more useful and
easier to use.

inversion_startswith(note_start)
Inverts a NoteSeq in away that the inverted sequencewill start with
note_start. The argument note_start can be a Note or an integer
representing a pitch from 0 to 11.

rotate(n=1)
Returns a new NoteSeq with the items rotated by n.

stretch_dur(factor)
Returns a new NoteSeq with the duration of each item multiplied
by factor. It’s good for making a sequence of notes longer or
shorter.

stretch_inverval(factor)
Returns a new NoteSeqwith the intervals stretched by factor. This
is useful when adding variation to a set of notes while keeping the
same contour.
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>>> a = NoteSeq(”C D E”)

>>> <Seq: [<C>, <D>, <E>]>

>>> a.stretch_interval(2)

>>> <Seq: [<C>, <E>, <G#>]>

harmonize(interval, size)
Returns all harmonizations for the NoteSeq as a new NoteSeq.

interval

The interval in the scale between each note (for example, 3
for thirds, 4 for fourths, and so on). The default is 3.

size

The number of notes in the chord. The default is 3.

4.4 Generating MIDI files

To generate a MIDI file we use the Midi class in pyknon.genmidi. The fol-
lowing example shows the basic usage (I’m using from __future__ import

division so I can write durations as 1/4 instead of 0.25).

def demo():

notes1 = NoteSeq(”D4 F#8 A Bb4”)

notes2 = NoteSeq([Note(2, dur=1/4), Note(6, dur=1/8),

Note(9, dur=1/8), Note(10, dur=1/4)])

midi = Midi(number_tracks=2, tempo=90)

midi.seq_notes(notes1, track=0)

midi.seq_notes(notes2, track=1)

midi.write(”midi/demo.mid”)

We define a Midi object with two tracks and a tempo of 90 beats per
second and write the NoteSeq in notes1 to the first track, and the NoteSeq

in notes2 to the second track. Finally, we write the whole thing to the
file “demo.mid”.

The class Midi has the following attributes:

number_tracks

The number of MIDI tracks. The default is 1.
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tempo

The MIDI tempo, from 0 to 127 BPM. The default is 60.

instrument

TheMIDI instrument value from0 to 127. Thedefault is 0 (piano).

It has the following methods:

seq_notes(note_seq, track=0, time=0)
Writes a NoteSeq to the MIDI stream.

note_seq

A sequence of notes of type NoteSeq.

track

Specifies the track number in which the note sequence will
be appended. Default is 0.

time

The number of beats the note sequence will start. Default is
0.

write(filename)
Writes the MIDI stream to filename.

Exercise 7. In the following code, what is the order of the notes in the
MIDI file? What happens when you change the second-to-last line to
midi.seq_notes(seq2, time=3) or midi.seq_notes(seq2, time=4)?:

from pyknon.genmidi import Midi

from pyknon.music import NoteSeq

seq1 = NoteSeq(”C D E”)

seq2 = NoteSeq(”F G A”)

midi = Midi()

midi.seq_notes(seq1)

midi.seq_notes(seq2)

midi.write(”foo.mid”)
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4.5 About MIDI

The Musical Instrument Digital Interface (MIDI) specification was de-
veloped in the 1980s to exchange information between keyboard syn-
thesizers. The MIDI file format is low-level and it doesn’t have the no-
tion of notes, rests, and duration values such as quarter notes. It’s built
around messages such as Note On and Note Off.

A MIDI file holds information about when a note started and stopped,
but it doesn’t know how the music will actually sound in the way a
MP3 file knows. A MIDI player will either synthesize the sound or use
sound samples (the popular SoundFont format uses sound samples).
This means that a MIDI file may sound wonderful in one program or
computer and appalling in others.

One advantage is that MIDI files are easy to generate and have a small
size. For instance, the size of a MIDI file containing the first move-
ment of Beethoven’s Ninth Symphony is less than 220k (we’re talking
about thousands of notes here) while an MP3 of a recording of the same
Symphony is almost 28Mb. Just keep in mind that the enjoyment factor
while listening is proportional to the file size.
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CHAPTER 5

Means of Combination

We can combine the music primitives to form more complex entities.
This, along with transformation using music operations, is in the heart
of music composition and has been used for hundred years.

5.1 Random Combination

Before we combine the music primitives we have seen in chapter The
Primitives of Music, let’s generate some music randomly to have an idea
of how it sounds.

The functions discussed in this section are in the file ran-

dom_combination.py. This file has a few utilities functions such as
choice_if_list and genmidi that we won’t see here since they are simple
and boring. You may explore them in the source file.

The function random_notes generates a sequence of notes by choosing a
pitch randomly from a list of pitches. The second, third, and fifth ar-
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guments define the octave, duration, and volume, respectively. If any of
these arguments is a list, choice_if_listwill pick one element randomly
or return the argument itself if it’s a number. Finally, the argument num-
ber_of_notes contains how many notes we want to generate.

def random_notes(pitch_list, octave_list, duration,

number_of_notes, volume=120):

result = NoteSeq()

for x in range(0, number_of_notes):

pitch = choice(pitch_list)

octave = choice_if_list(octave_list)

dur = choice_if_list(duration)

vol = choice_if_list(volume)

result.append(Note(pitch, octave, dur, vol))

return result

In the following example we want to generate five notes from the chro-
matic scale, in any octave fromfive to six, with quarter note, eighth note,
or sixteenth note durations:

>>> random_notes(range(0, 12), range(5, 7), [0.25, 0.5, 1], 5)

>>> <Seq: [<E>, <E>, <B>, <F>, <E>]>

In the following example we generate randomnotes from the pentatonic
scale, in the central octave, with a duration of an eighth note:

>>> random_notes([0, 2, 4, 7, 9], 5, 0.5, 5)

>>> <Seq: [<C>, <A>, <A>, <D>, <C>]>

Let’s generate a hundred notes from the chromatic scale, in any octave
from 0 to 8 (that’s quite a range!), and using all basic durations. (We’re
using from __future__ import division, so we can type things like 1/4
instead of 0.25).

def random1():

chromatic = range(0, 12)

durations = [1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1]

notes1 = random_notes(chromatic,

range(0, 9),

durations,

100,
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range(0, 128, 20))

gen_midi(”random1.mid”, notes1)

Track 2. Notice how this track sounds. Do you think it sounds similar
to the music you enjoy? There’s no right answer here, but most people
will think this doesn’t sound good. Even if you find it interesting at first,
it may get boring after a while (try it with a thousand notes!). But I don’t
want to control your listening here; if you like it, we’ll still love you.

Now let’s add some restrictions. We’ll generate the same hundred ran-
dom notes from the chromatic scale, but this time with a smaller range
and with only two durations:

def random2():

chromatic = range(0, 12)

notes2 = random_notes(chromatic,

range(3, 7),

[1/16, 1/8],

100)

gen_midi(”random2.mid”, notes2)

Track 3. What do you think? I imagine you’ll agree that it sounds much
more familiar than the previous track. This is because we are using a
more restricted octave range and note values.

Now we’ll generate another hundred notes from the pentatonic scale,
in any octave from 5 to 6 (only two octaves), and with a duration of a
sixteenth note:

def random3():

pentatonic = [0, 2, 4, 7, 9]

notes = random_notes(pentatonic,

range(5, 7),

1/16,

100)

gen_midi(”random3.mid”, notes)

Track 4. By having only one note value and a very recognizable scale,
this example may sound the most familiar to you.

Naturally, nobody can tell how you should listen to things. Maybe ran-
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dom1 was the example you liked the best. However, one important point
here is that random music almost never sounds good or familiar. Rep-
etition and constraints are important.

Exercise 8. Generate some random notes using random1, random2, and
random3 but using the major and minor scales.

Exercise 9. Play with random_notes to generate different notes. Add dif-
ferent kinds of constraints and see which ones you like the best.

5.2 Music from Math

Often, beautiful mathematics doesn’t make beautiful music and vice
versa, but sometimes it does.

Let’s define a function play_list that is similar to random_notes, but in-
stead of picking random notes from a list, it receives a list of numbers
and turn them into notes:

def play_list(pitch_list, octave_list, duration,

volume=120):

result = NoteSeq()

for pitch in pitch_list:

note = pitch % 12

octave = choice_if_list(octave_list)

dur = choice_if_list(duration)

vol = choice_if_list(volume)

result.append(Note(note, octave, dur, vol))

return result

Now let’s see how Fibonacci’s sequence and Pascal’s triangle sound. Pas-
cal’s triangle is an array of the binomial coefficients that has all kinds of
neat properties. Check Pascal’s Triangle And Its Patterns formore. Here
are the first six rows:

1

1 1

1 2 1

1 3 3 1
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1 4 6 4 1

1 5 10 10 5 1

The utility function pascals_triangle in random_combinations.py will
generate each row as a list. For instance, to generate the first five rows:

>>> list(pascals_triangle(5))

>>> [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

There’s something funny about transforming the Fibonacci sequence
into music. Here are the first 25 numbers in the sequence: 0, 1, 1, 2,
3, 5, 8 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657. If we apply mod12 on them we’ll get the following
notes: 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2 11, 1. If we
apply mod12 on the next 25 numbers in the Fibonacci sequence we will
get the same list of notes: 0, 1, 1, 2, 3, 5 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4,
5, 9, 2, 11, 1. That is, the Fibonacci sequence mod 12 is cyclical! Try to
listen to this repetition in the sound example below.

In the following function we make one list with the first 55 Fibonacci
numbers and another with the first 30 rows in Pascal’s triangle. We use
these numbers as input for the play_list function:

def random_fib():

octave = range(5, 7)

fib = fibonacci(100000000000)

pascal = flatten(pascals_triangle(30))

n1 = play_list(fib, octave, 1/16)

n2 = play_list(pascal, 4, 1/16)

n3 = play_list(pascal, octave, 1/16)

gen_midi(”fibonnacci.mid”, n1)

gen_midi(”pascal.mid”, n2)

gen_midi(”pascal_octaves.mid”, n3)

Track 5. The Fibonacci sequence.

Track 6. Pascal’s Triangle.

Track 7. Pascal’s Triangle in octaves.
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To be honest, when I was writing the code I thought Pascal’s triangle
was going to sound boring due to the repetitions. But it turns out that
I like it very much! (Don’t hold that against me). One more proof that
repetition is good.

Exercise 10. Input your favorite integer sequence in play_list and see
how it sounds. If you don’t have a favorite integer sequence, go to The
On-Line Encyclopedia of Integer Sequences (https://oeis.org/) and pick
one. What kind of person doesn’t have a favorite integer sequence?

5.3 Combination of Notes Horizontally

Now that we have heard how some randomly generated music sounds,
let’s combine some primitives to make something more interesting. To
me, one of the best things about applying programming to music is that
we can describe and reproduce the musical process involved.

We’ll reproduce the basic process of four compositions: Piano Phase
(1967) by Steve Reich, Crab Canon and Quaerendo invenietis (1747)
from the Musical Offering by J. S. Bach, and Agnus Dei (1489?) by
Josquin des Prez. It’s interesting that these pieces are more than 200
years apart, the older being more than 500 years old, and yet they still
manage to use the same primitives we have seen so far.

5.3.1 Steve Reich, Piano Phase

The musical process in Piano Phase is very simple. It’s a composition
for two pianos where one pianist plays a 12-note pattern repeatedly and
unchangeably, while the other pianist plays rotations of the original pat-
tern. Each rotation is repeated a number of times.

Track 8. Piano Phase played by humans. (Only in your resources web-
page, sorry.)

This process can be implemented in code in many ways. The following
implementation is not the simplest, but the number of rotations and the
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number of repetitions of each rotation is abstracted in the function pi-

ano_phase; we can have as many rotations and repetitions as we want.
The function gen_patterns makes a NoteSeq with the appropriate rota-
tions and repetitions of pattern.

def gen_patterns(pattern, number_rotations=12, repeat=4):

result = NoteSeq()

for n in range(0, number_rotations):

rotation = pattern.rotate(n)

result.extend(rotation * repeat)

return result

def piano_phase(number_rotations=12, repeat=4):

pattern = NoteSeq(”E16 F# B C#’’ D’’ F#’ E C#’’ B’ F# D’’ C#”)

piano1 = pattern * (number_rotations + 1) * repeat

piano2 = gen_patterns(pattern, number_rotations, repeat)

midi = genmidi.Midi(2, tempo=108)

midi.seq_notes(piano1)

midi.seq_notes(piano2, track=1, time=3*repeat)

midi.write(”midi/piano-phase.mid”)

Track 9. Piano Phase generated by our function. Naturally, this one
sounds much more mechanical and precise.

I find it remarkable that we can implement and describe themusical pro-
cess of a composition in a dozen lines of code. It’s evenmore remarkable
that the gist of the process is just two lines of code:

piano1 = pattern * (number_rotations + 1) * repeat

piano2 = gen_patterns(pattern, number_rotations, repeat)

5.3.2 J. S. Bach, Crab Canon

The Crab Canon from Bach’s Musical Offering is a composition for two
instruments, but Bach wrote it in only one line. One musician plays
the first voice normally while the other plays the score backwards. Yes,
backwards. I do that when I drink too much and have a violin in my
hands. You don’t want to be near me. There’s a nice Youtube video that
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shows this canon on aMöbius strip: J.S. Bach - Crab Canon on aMöbius
Strip.

The implementation is very straightforward. One voice plays the theme
unchanged while the other plays the theme’s retrograde one octave be-
low. It’s that simple:

def crab_canon():

theme2 = NoteSeq(”file://canon-crab”)

rev_theme = theme2.transposition(-12).retrograde()

midi = Midi(2, tempo=120)

midi.seq_notes(theme2)

midi.seq_notes(rev_theme, track=1)

midi.write(”midi/canon-crab.mid”)

Although it’s not in the score, it’s common to play the second voice one
octave below the original theme to make it easier to hear both voices.

Track 10. Crab canon generated by our function. (Check our resources
webpage to listen to a human performance)

One could argue that we are cheating since we are not generating the
theme (the full theme is encoded in the file canon-crab). While this is
true, the compositional process is fully described in the code above. If
we change the theme and run the code we’ll get a different composition
with the same process. In fact, you could substitute canon-crabwith your
own file.

Exercise 11. Create your own crab canon using the function crab_canon.
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5.3.3 Bach, Canon Quaerendo invenietis

Now let’s see the code to implement another canon in the Musical Of-
fering. I won’t show the sheet music here, but from implementation you
can see that it’s a canon by inversion:

def canon():

theme1 = NoteSeq(”file://canon-quaerendo-invenietis”)

part1 = theme1 + theme1[2:] + theme1[2:11]

part2 = theme1 + theme1[2:] + theme1[2:4]

voice1 = part1

voice2 = part2.inversion_startswith(Note(2, 4))

midi = Midi(2, tempo=150)

midi.seq_notes(voice1, time=3, track=0)

midi.seq_notes(voice2, time=13, track=1)

midi.write(”midi/canon.mid”)

Since the theme is repeated, we need to do some fiddling to make the
repetitions have the appropriate size (when we define part1 and part2).
However, the gist of the function is just two lines; the theme and its
inversion:

voice1 = part1

voice2 = part2.inversion_startswith(Note(2, 4))

Track 11. Canon Quaerendo invenietis

Exercise 12. Change the canon function to have a different process. In-
stead of inversion, use transposition, retrograde, or other operations
and see how it sounds.

5.3.4 Josquin des Prez, Agnus Dei

TheAgnus Dei by Josquin des Prez is a prolation canon, where a melody
is accompanied by one or more imitations of itself (possibly transposed
or inverted) in other voices at different speeds. Here are the first six
measures of Josquin’s Agnus Dei:
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Track 12. Josquin’s Agnus Dei

Do you notice a pattern? What if we write the note values:

S: 1/2 1/2 1/2 3/4 1/4 3/8 1/8

A: 1 1 1 3/2 1/2 3/2 1/4

T: 1/2 1/2 1/2 3/4 1/4 3/8 1/8

As you can see all three voices have the same rhythmic pattern, but the
values for the second voice are the double of the others. The first and
third voices seem to have the same notes values, but in the sheet music
one appears to be moving faster than the other. Josquin uses a weird
(to us) notation to indicate that the first voice should have three notes at
the same time the second voice has two notes of the same value. He uses
different time signatures; today we’d write the same thing using tuplets.

If this sounds confusing, just look at the following code to imple-
ment Josquin’s Agnus Dei (the method transp is an alias to transposi-

tion_startswith):

def josquin():

main_theme = NoteSeq(”file://josquin”)

theme1 = main_theme.stretch_dur(0.66666)

theme2 = main_theme[0:24].stretch_dur(2).transp(Note(”C”))

theme3 = main_theme[0:50]

midi = Midi(3, tempo=80)

midi.seq_notes(theme1, track=0)

midi.seq_notes(theme2, track=1)

midi.seq_notes(theme3, track=2)

midi.write(”midi/josquin.mid”)
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We have three tracks with the theme. In the first and second tracks the
theme is stretched by 2/3 and 2, respectively. The duration of the third
track is not stretched. The second track also transposes the theme to
start with the note C. It’s simple, isn’t it?

In these four examples we have seen that it’s possible to generate mean-
ingful music with a small amount of code. The key is to capture the
compositional process of the piece. Naturally, many compositions will
have processes much more elaborate than the ones we have used; too
complex to fit in a few lines of code. But the operations we have seen in
chapter The Primitives of Music are the foundation for many combina-
tions in music and have been used for hundreds of years.

5.4 Chords: Combination of Notes Verti-
cally

How many chords exist? Let’s start with three-note chords. As you re-
member, a combination is a way of selecting k things from a larger group
n where order doesn’t matter. For example, in how many ways can we
select two items from (a, b, c)? The answer is three:

(a, b)

(a, c)

(b, c)

Items like (b, a) and (c, b) don’t count, since order doesn’t matter (they’d
matter if we were counting permutations). The formula for combina-
tions is as follow:

C(n, k) =
n!

(n� k)!k!

So, how many three-note chords can we have? If we follow the formula
for selecting groups of 3 notes from 12 we’ll have 220 chords. It’s easy to
implement a small utility function to do the calculation for us (factorial
is defined in the math module):
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def chord_combinations(n, k):

return factorial(n) / (factorial(n - k) * factorial(k))

>>> chord_combinations(12, 3)

>>> 220

If you are feeling adventurous (or bored), you can generate every one of
the 220 combinations with itertools.combinations:

>>> list(combinations(range(0, 12), 3))

This should answer our question, but another question is “how many
different types of chords exist?” If we take a close look at these 220 com-
binations we’ll see that we have chords related by transposition such as
(0, 4, 7) and (1, 5, 8), that is, C major and Db major, respectively. We
also have chords related by inversion such as (0, 4, 7) and (0, 8, 5). We
want to remove those duplications.

We could write code to do that for us, but a simpler way is to use pitch
class sets. Allen Forte classified every subset from a twelve-tone collec-
tion, removing the subsets related by transposition or inversion (Forte,
1973). In the end, we actually have only twelve different subsets for three
elements. The module pyknon.pcsets has all possible pitch class sets in
the dictionary PC_SETS. The key in the dictionary is the set’s Forte num-
ber and the value is the set itself. These are the three-note subsets:

’3-1’: [0, 1, 2],

’3-2’: [0, 1, 3],

’3-3’: [0, 1, 4],

’3-4’: [0, 1, 5],

’3-5’: [0, 1, 6],

’3-6’: [0, 2, 4],

’3-7’: [0, 2, 5],

’3-8’: [0, 2, 6],

’3-9’: [0, 2, 7],

’3-10’: [0, 3, 6],

’3-11’: [0, 3, 7],

’3-12’: [0, 4, 8],

Some people don’t like to remove the sets related by inversion, since they
sound different (for instance, the inversion of a major chord is a minor
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chord). Larry Solomon’s Table of Pitch Class Sets. has nineteen three-
note sets instead of twelve. In any case, the main point is that because of
somemusic operations such as transposition, wewent from220 possible
chords to only 12 (or 19). This is something that happens quite often
when dealing with musical data; a larger mathematical data is reduced
due to music operations.

Exercise 13. Write a Python function that filters all three-note chords
from the 220 combinations and returns only the ones that are not related
by transposition.

Now that we have seen how many chords we have, let’s see how to har-
monize every scale. The harmonization for themajor scale is pretty sim-
ple; you stack notes vertically following every other note in the scale:
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&2 !

[Title]
[Composer]

Score

It’s fairly common inmodernmusic to use non-traditional scales to gen-
erate new and interesting harmonies. For instance, in the example below
we have a seven-note scale that is very different from the good ol’ ma-
jor scale. Right after the scale we have harmonizations for every three,
four, and five note of the scale. Also notice that we break the thing about
having the interval in which we pick notes be the same as the horizontal
notes (that is, having chords by thirds, fourths, and so on). This leads to
very interesting harmonies.
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Track 13. Harmonization

So, to harmonize every scale we need to know how many scales exist,
and the answer will vary depending on whom you ask. In a way, a scale
is an ordered set of notes, so we can use Allen Forte’s pitch class sets.
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As I mentioned previously, some people think that Forte’s way is too
condensed and doesn’t take into account a bunch of scales, but it’ll do
for the purpose of this section (There are 4,095 possible combinations
of scales, but there are only 208 pitch class sets).

First we implement the method harmonize in the class Note. It accepts
the following arguments:

• scale: an iterable containing Notes.

• interval: the interval quantity between notes in the chord. For in-
stance, a regular triad has two thirds pilled up, therefore the value
for interval will be 3.

• size: the number of notes in a chord.

The method harmonize will compute the indices in the scale that corre-
spond to the notes to be harmonized. For example, if we want to har-
monize the note D in the C major scale the indices will be 1, 3, and 5.
Finally, harmonize calls tonal_transposition on each of those indices to
get the harmonized chord:

def harmonize(self, scale, interval=3, size=3):

i = (interval - 1)

indices = range(1, size*i, i)

return [self.tonal_transposition(x, scale) for x in indices]

While a regular transposition (as defined in section Transposition) is the
sum of a note and a transposition index, a tonal transposition looks like
an index in a table, where the table is the scale in question. For example,
the (regular) transposition of C with the transposition index 3 (a minor
third above) is Eb, while the tonal transposition of C a third above in
the scale of A minor is E and in the scale of C minor is Eb. The method
tonal_transposition is slightly complicated because we need to trans-
pose the octave as well:

def tonal_transposition(self, index, scale):

pos = index + scale.index(self) - 1

octave, rest = divmod(pos, 7)

note = copy.copy(scale[pos % len(scale)])

note.octave += octave

return note
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Here’s how we use harmonize:

>>> c = Note(”C”)

>>> <C>

>>> c_major_scale = NoteSeq(”C D E F G A B”)

>>> <Seq: [<C>, <D>, <E>, <F>, <G>, <A>, <B>]>

>>> c.harmonize(c_major_scale)

>>> [<C>, <E>, <G>]

The implementation of the method harmonize in the class NoteSeq is
straightforward:

def harmonize(self, interval=3, size=3):

return [NoteSeq(note.harmonize(self, interval, size)) for note in self]

Here’s an example of how to harmonize a sequence of notes:

>>> c_major_scale = NoteSeq(”C D E F G A B”)

>>> <Seq: [<C>, <D>, <E>, <F>, <G>, <A>, <B>]>

>>> c_major_scale.harmonize()

>>> [<Seq: [<C>, <E>, <G>]>, <Seq: [<D>, <F>, <A>]>, <Seq: [<E>,

>>> <G>, <B>]>, <Seq: [<F>, <A>, <C>]>, <Seq: [<G>, <B>, <D>]>,

>>> <Seq: [<A>, <C>, <E>]>, <Seq: [<B>, <D>, <F>]>]

And the result of harmonizewill be a list with the harmonization of every
chord in the scale. In the next example I’m using 4 as the chord size to
generate tetrads:

>>> c_major_scale = NoteSeq(”C D E F G A B”)

>>> <Seq: [<C>, <D>, <E>, <F>, <G>, <A>, <B>]>

>>> c_major_scale.harmonize(size=4)

>>> [<Seq: [<C>, <E>, <G>, <B>]>, <Seq: [<D>, <F>, <A>, <C>]>,

>>> <Seq: [<E>, <G>, <B>, <D>]>, <Seq: [<F>, <A>, <C>, <E>]>, <Seq:

>>> [<G>, <B>, <D>, <F>]>, <Seq: [<A>, <C>, <E>, <G>]>, <Seq: [<B>,

>>> <D>, <F>, <A>]>]

Finally, lets generate tetrads separated by fourths instead of thirds:

>>> c_major_scale = NoteSeq(”C D E F G A B”)

>>> <Seq: [<C>, <D>, <E>, <F>, <G>, <A>, <B>]>

>>> c_major_scale.harmonize(interval=4, size=4)

>>> [<Seq: [<C>, <F>, <B>, <E>]>, <Seq: [<D>, <G>, <C>, <F>]>,
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>>> <Seq: [<E>, <A>, <D>, <G>]>, <Seq: [<F>, <B>, <E>, <A>]>, <Seq:

>>> [<G>, <C>, <F>, <B>]>, <Seq: [<A>, <D>, <G>, <C>]>, <Seq: [<B>,

>>> <E>, <A>, <D>]>]

To harmonize every scale we just create a NoteSeq from the numbers in
pc_set and call the method harmonize:

for forte, pc_set in pcset.PC_SETS.items():

scale = NoteSeq([Note(n) for n in pc_set])

scale.harmonize()

Generating harmonizations for every scale is interesting, but it starts to
get interesting when we can filter things. For instance, we may want to
generate harmonizations for the scales that have more than four notes
and have consecutive intervals greater than one semitone. This can be
accomplished with the function filter_sets. This is how we’d express
the previous example:

>>> filter_sets(lambda intervals, size: size > 4 and 1 not in intervals)

The function filter_sets accepts an anonymous function with a list of
the consecutive intervals in a set and the size of a set as parameters. If
the condition in the body of the anonymous function is met the set is
returned:

def filter_sets(condition, all_sets=pcset.PC_SETS):

sets = {}

for forte, pc_set in all_sets.items():

intervals = simplemusic.intervals(pc_set)

size = len(pc_set)

if condition(intervals, size):

sets[forte] = pc_set

return sets

This is an example of how high-order functions can be used to abstract
code. Also, the built-in function all is very handy to chain conditions.
Let’s say we want to get scales that have more than four notes and have
only one consecutive semitone and one consecutive whole tone:

>>> filter_sets(lambda i, s: all([s > 4, i.count(1)==1, i.count(2)==1]))

>>> {’5-32’: [0, 1, 4, 6, 9], ’5-31’: [0, 1, 3, 6, 9]}
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As you can see, there’s nothing magical about the major scale and the
way it’s harmonized. It’s one among hundreds of scales and dozens of
ways of stacking notes on top of each other. And, unsurprisingly, the
code to harmonize every scale is relatively simple.

Exercise 14. The method harmonize stacks notes by a fixed interval (by
thirds, fourths, etc). Create a new version that accepts and uses a “chord
template” to harmonize a scale.

5.5 Summary

These are the main points we have seen in the chapter:

• Full randomness doesn’t sound good.

• Repetition and limitation of primitives create more familiar
sounds.

• We can replicate themusical process of greatmusic in simple code.

• We can generate music using a few operations.

• An operation is a function that maps a set of notes to another set.

• Traditionally we have operations like transposition, inversion,
and retrograde, but you can invent your own.

• Operations can be used to create combinations.

• Transposition and inversion reduce the number of combinations.

• We have 4,095 combinations, but only 208 pitch-class sets.
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CHAPTER 6

A Look Inside the Primitives

In the previous chapters we assumed that notes and pitches were black
boxes. In this chapter we’re going to open that black box and see what
they are made of.

6.1 The Basics of Sound

As many of you science geeks know, a sound source vibrating will dis-
turb the air, making it oscillate. The air’s vibration will in turn make
ours eardrums oscillate at the same frequency as the sound source. This
sound source can be a guitar string, a car horn, or your bloody noisy
neighbor (keep it down Jimmy, will you?). We can’t see the air oscillat-
ing, but if you put something vibrating in water it’s easy to see how the
vibration forms waves. There are cool videos on the Internet demoing
the physical properties of sound. Search for something like “soundwave
experiments” or check this book’s resources web page.
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If a sound source is vibrating 262 times a second we say that the fre-
quency of its oscillation is 262 cps (cycles per second) or 262 Hz (hertz).
We listen to the frequency of a sound as pitch. For instance, we listen to
a sound with a frequency of 262 Hz as a middle C. Keep in mind that a
sound frequency is an objective property, however the way we perceive
pitches is not.

The relationship between pitch and frequency is not linear. For instance,
C1= 32.7Hz andD1=36.7Hz, a difference of only 4Hz, whileC8 (4,186
Hz) and D8 (4,698 Hz) have a difference of 512 Hz. Actually, the way
we perceive musical intervals is logarithmic. For example, the interval
between the notes with frequency of 110 Hz and 220 Hz is perceived as
the same interval as the notes with 220 Hz and 440 Hz.

So, we listen to a sound with a frequency of 262 Hz as a middle C. How
about a sound with a frequency of 263.7 Hz or 264.37 Hz? We listen
to all three sounds as a middle C as well but with different intonation or
shades, if youwill. There’s a range of frequencies that we hear as the same
pitch. The next note, C#, has a frequency of 277.18 Hz. The mapping
from frequencies to note names has changed over the years. Today the
frequency of a central A is defined by the ISO 16 standard as having 440
Hz. However some orchestras tune the A to 442 Hz and sometimes as
high as 444 Hz.

The following functions are useful to calculate the frequency of notes:

from math import log

SEMITONE = 1.059463

NOTES = [’A’, ’A#’, ’B’, ’C’, ’C#’, ’D’, ’D#’, ’E’, ’F’, ’F#’, ’G’, ’G#’]

def freq_to_note(x):

interval = int(round(log(x/440.0, SEMITONE))) % 12

return NOTES[interval]

def note_to_freq(n):

if n in NOTES:

return 440 * (SEMITONE ** NOTES.index(n))

As we can see, the frequencies of 440, 442, and 449 Hz are all identified
as A. The next chromatic note, A#, has a frequency of 466.16 Hz:
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>>> freq_to_note(440)

>>> A

>>> freq_to_note(442)

>>> A

>>> freq_to_note(449)

>>> A

>>> freq_to_note(455)

>>> A#

>>> note_to_freq(”A#”)

>>> 466.16372

But the best part is that we can play with these concepts in practice. I’ve
used Csound to generate the following examples. Csound is a sound
design, audio synthesis, and signal processing system freely available at
http://csounds.com.

In the next examplewe are going to hear 11 notes separated by 1Hz each.
The first note has a frequency of 440 Hz, the second 441, and so on until
the last note with a frequency of 450 Hz. See how many different notes
you can hear. Unless you’re a frog (you never know), you are probably
not going to hear 10 separate notes. When I play this exercise, most
people hear from one to three notes, but your mileage may vary.

Track 14. Ten notes separated by 1 Hz.

We humans can hear notes from 20 to 20,000 Hz (again, disregard this if
you’re a frog), therefore we can’t hear low frequencies such as 1 or 2 Hz.
But one neat trick is to take advantage of beats, the interference between
two sounds with close frequencies. In the next examples we are going to
hear two simultaneous notes separated by 1, 2, and 3 Hz. Since Hertz is
a measure of cycles per second, we should hear the difference between
these sounds as 1, 2, and 3 cycles per second:

Track 15. Two simultaneous notes separated by 1 Hz.

Track 16. Two simultaneous notes separated by 2 Hz.

Track 17. Two simultaneous notes separated by 3 Hz.
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6.2 The Harmonic Series: a Building Block

We can describe a complex tone such as your voice, a guitar, or a bird as
a combination of many simpler periodic waves, that is, sine waves. Each
of these sine waves is called a partial with its own frequency, amplitude,
envelope, and phase. Weusually perceive the pitch of a note as the lowest
partial, the fundamental frequency. The relative strength of each partial
helps to determine the musical timbre, but other things such as noise
are important as well. Here are same basic definitions:

Partial. One of the sine waves that describes a complex tone.

Harmonic. Partials that are related to the fundamental frequency by
whole number multiples. This includes the fundamental fre-
quency.

Overtone. Any partial with the exception of the fundamental fre-
quency.

Inharmonic. Partials that aren’t related to the fundamental frequency
by whole number multiples. Most instruments have some de-
gree of inharmonicity, but instruments such as cymbals and gongs
have more.

Some instruments have more harmonic partials than others. Instru-
ments such as cymbals, gongs, and tam-tams are full of inharmonic par-
tials. Some instruments, such as high-pitched flutes and ocarinas have
almost no overtones.

The harmonic series is an infinite arithmetic series defined by
∑∞

n=1 fn,
where f is the fundamental frequency and n is the number of partials.
For instance, if the fundamental frequency is 100 the first 5 partials will
be 100, 200, 300, 400, and 500. A function to calculate the harmonic
series of a given fundamental is, of course, straightforward:

def harmonic_series(n, fundamental):

return [fundamental * (x + 1) for x in range(n)]

Here we calculate the first thirteen partials of the harmonic series that
has A as the fundamental:
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>>> harmonic_series(13, 55)

>>> [55, 110, 165, 220, 275, 330, 385, 440, 495, 550, 605, 660, 715]

As we can see, the difference between consecutive partials is constant
and equal to the fundamental frequency. However, because we perceive
frequencies logarithmically, we hear the higher partials as smaller inter-
vals than the lower ones.

In the following picture we can see an approximation of the harmonic
series in musical notation. The numbers on the top indicate the differ-
ences from equal temperament in cents, and this difference shows that
the equal temperament is not very “natural” after all.
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Track 18. The first twenty harmonics in the harmonic series. Notice
how the last notes sound different from the equal temperament.

Track 19. As we saw, a complex sound is composed of simpler sounds
following the harmonic series. See what happens when we play the pre-
vious twenty harmonics at the same time. It sounds like a buzzer, doesn’t
it? Right now each harmonic is static; it has a fixed amplitude from start
to end. To have a more realistic (and pleasant) sound we’d have to vary
the volume of each partial, which we call an envelope.

Track 20. In this track the amplitude of each harmonic is reduced as it
gets higher. That is, the first note has an amplitude of 80 dB, the second
70 dB, and so on.

Track 21. Some instruments don’t have all partials. The clarinet, for
instance, has only the odd partials. In this track we simulate that by
playing the same harmonic series as before, but filtering the even par-
tials. As you can see, it sounds clarinet-like, although far from realistic.
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Track 22. In this track we have a few gong-like sounds from the Ams-
terdam Catalog of Csound Intruments, based on Risset’s “Introductory
Catalogue of Computer Synthesized Sounds.” The first note has the fol-
lowing partials in Hertz: 240, 277, 340, 385, 605, 670, 812. As we can
see, they’re not related by whole number multiples, therefore they’re in-
harmonics.

A characteristic of intervals whose frequencies have a whole number
ratio is that they don’t beat. In the next image we can see a pure fifth
(in the harmonic series) and an equal tempered fifth. Notice that the
second one has a very pronounced beating:

Now let’s listen to some intervals in both the harmonic series and equal
temperament. See if you can hear any beating in these intervals:

Track 23. Third.

Track 24. Fifth.

Track 25. Seventh.

Track 26. Octave.

Exercise 15. Try to construct a scale using only frequencies from the
harmonic series. Notice how it sounds different from the equal temper-
ament.
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6.3 The Beautiful Math of Temperament
Systems

The octave is the most basic interval (it’s the first interval in the har-
monic series), and as we saw, has a ratio of 2:1. The next basic interval
in the harmonic series, a fifth, has the ratio of 3:2. We can derive the
frequency of every note using this ratio:

C G D A E B F# C# G# D# A# E# B#

3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2 * 3/2

This type of temperament is known as the Pythagorean temperament.

The problem of using (only) pure fifths to construct a scale is that the
octave can’t be divided into 12 fifths. The octave won’t “close.” If we
multiply 3/2 twelve times (there are 12 fifths in one octave), we get
531441/4096 instead of 2/1 (a pure octave). As we can see, the differ-
ence between the lowest C and the upper B# is 1.746 Hz. This difference
is known as the Pythagorean comma:

>>> o = 2**7

>>> 128

>>> n = Fraction(3, 2)**12

>>> 531441/4096

>>> float(n)

>>> 129.746337891

>>> float(n - o)

>>> 1.74633789062

This is one of the main reasons that composers, theorists, and perform-
ers have created so many tuning systems over the years. Some tuning
systems relinquish some pure fifths to have more pure thirds, while oth-
ers renounce everything (equal temperament). Here are the ratios for
the Pythagorean temperament:
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note ratio
C 1/1
C# 2187/2048
D 9/8
D# 32/27
E 81/64
F 4/3
F# 729/512
G 3/2
G# 6561/4096
A 27/16
A# 16/9
B 243/128

The next interval in the harmonic series is the just third with the ratio of
5:4. Here’s a simple C major scale with both the just temperament and
Pythagorean. Notice the major third from C to E is bigger in the just
temperament (5/4 > 81/84):

Just Pythagorean
C 1/1 1/1
D 9/8 9/8
E 5/4 81/84
F 4/3 4/3
G 3/2 3/2
A 5/3 27/16
B 15/8 243/128
C 2/1 2/1

Now the question that torments most music students I have ever met:
“How comeD# is different fromEb?” In the 1600s and 1700s theywould
tune a harpsichord in the key of the composition to be played. So, in a
recital, if a piece was in D major, they’d tune it in a way that it’d sound
the most consonant for D major. If the next piece was in F major, tough
luck, they’d retune the whole keyboard.

It’s useful to have a Python function to generate a scale given a temper-
ament and a base frequency:
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def scale_freqs(name, base_freq=440):

return [float(x * base_freq) for x in name]

The argument name is a list of fractions that define a temperament. For
example, the definition for the just intonation temperament is as follows
(I import fractions.Fraction as F):

just_intonation = [F(1,1), F(16,15), F(9,8), F(6,5), F(5,4), F(4,3),

F(7,5), F(3,2), F(8,5), F(5,3), F(9,5), F(15,8)]

If we tune our keyboard using the just temperament in C, we will have
the following frequencies:

>>> c = scale_freqs(just_intonation, 528)

>>> [528.0, 563.2, 594.0, 633.6, 660.0, 704.0, 739.2, 792.0, 844.8,

>>> 880.0, 950.4, 990.0]

In the following code we have two chromatic scales, C and E in the just
temperament. We can see that Eb in the scale of C has a frequency of
633.6 Hz while the enharmonically equivalent D# has a frequency of
618.75 Hz if tuned in E (we divide the frequency by two to adjust the
octave):

>>> c = scale_freqs(just_intonation, 528)

>>> [528.0, 563.2, 594.0, 633.6, 660.0, 704.0, 739.2, 792.0, 844.8,

>>> 880.0, 950.4, 990.0]

>>> e = scale_freqs(just_intonation, 660)

>>> [660.0, 704.0, 742.5, 792.0, 825.0, 880.0, 924.0, 990.0,

>>> 1056.0, 1100.0, 1188.0, 1237.5]

>>> c[3]

>>> 633.6

>>> e[11] / 2

>>> 618.75

This happens because in most temperaments each interval has a differ-
ent size. Equal temperament is, of course, the only temperament where
every interval has the same size.

Here’s another way of thinking. In the following table we have a simple
C major scale in the just temperament. I want to know what frequency
E will have in the C minor scale. One way to calculate it is to multiply
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the ratio for the minor third. We have four minor thirds in this scale:
between B and D, D and F, E and G, and A and C. Their ratios are 5/3,
32/27, 6/5, and 6/5, respectively.

name ratio freq
C 1/1 528.0
D 9/8 594.0
E 5/4 660.0
F 4/3 704.0
G 3/2 792.0
A 5/3 880.0
B 15/8 990.0
C 2/1 1056

If we decide that the ratio between C and E should be 6/5, then E will
have a frequency of 633.6 Hz (528 * 6/5). Now let’s have a major third
from B in the same scale. If we use the interval 5/4 for the major third,
then D# will have a frequency of 618.75 Hz (990 * 5/4 and divided by
2 to fit in the octave). As we can see, Eb and D# don’t have the same
frequency in this example.

Here are some examples of scales and intervals played in different tuning
systems:

Track 27. Kirnberger tuning.

Track 28. Pythagorean tuning.

Track 29. Just intonation.

Track 30. Equal temperament.

In this chapter we’ve seen the basics of sound, especially how pitches re-
late to frequency, how complex sounds are composed of simpler sounds,
and how on earth D# is different from Eb. But we barely scratched the
surface of these subjects. To know more check out our resources web-
page.
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CHAPTER 7

Means of Abstraction

In this section we’ll look at how to combine small elements into longer
sections.

In programming, we have many ways to combine and abstract small
elements into bigger pieces. Wemay combine expressions into functions
and methods, methods into classes, classes and functions into modules,
and modules into packages. One important aspect is naming things.
When we have the same piece of code repeated, we can abstract it in a
function or in a class. And by giving it a name we can use it again. To
quote Gerald J. Sussman, “If you have the name of the spirit you have
power over it” (http://bit.ly/sussman2).

If this sounds like Computer Science 101, it’s because it is. But com-
posers have used a similar scheme to organize their compositions. Basic
elements of music can be combined in motifs, which can be grouped in
phrases, which can be used to form periods, which will create sections,
which will form movements, which will be part of a whole 40 minute
symphony.
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Let’s take a look at the following music excerpt:

& 44 .œ jœb .œ œb œb
f

œ œb .œb œ ˙ .œ jœ .œ œb œb œ œ .œb œ .œb œ .œb œb

&5 œb . œ. œb . œ. œb . œ. œ. œb .ƒ œ. œ. œ. œ. œ. œ. œ. œ. œ œ œ# œ œ œ œ# œ .˙# œ#p

[Title]
[Composer]

Score

We can notice some repetition going on but there are also things that
sound different (for instance, measures one and five).

Track 31. Simple music excerpt.

If we mark the things that are similar with letters, we may end up with
something like the following image. Letters like a1 and a2 indicate that
both elements are the same motif but with different variations or oper-
ations.

& 44 .œ jœb .œ œb œb œ œb .œb œ ˙ .œ jœ .œ œb œb œ œ .œb œ .œb œ .œb œb

&5 œb . œ. œb . œ. œb . œ. œ. œb . œ. œ. œ. œ. œ. œ. œ. œ. œ œ œ# œ œ œ œ# œ .˙# œ#

a a1 a2 a3

A A2

a1 a1

B

c c c1 c c2 c2 a4
C

Motifs like a and a1 have the same interval (a minor third) and the same
rhythmic structure. In fact, a1 is just like a but transposed and stretched.
We saw these operations in chapter Means of Combination.

We can see the code used to generate this excerpt below. In this example
I’m using transp as an alias for transposition_startswith and inv as an
alias for inversion_startswith. Notice how every an is a transposed,
inverted, or stretched. c looks like a different motif, but in fact c is the
combination of a and a1 with the rhythm changed (line 11).
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1 def abstraction():

2 a = NoteSeq(”C4. Eb8”)

3 a1 = a.transp(5).stretch_dur(0.5)

4 a2 = a.inv(”Db’’”)

5 a3 = a1.inv(8)

6

7 A = a + a1 + a2 + a3

8 A2 = A.transp(2)

9 B = a1.transp(8) + a1.transp(”Eb’’”)

10

11 c = NoteSeq([Note(x.value, dur=0.125) for x in a + a1])

12 C = (c.inv(”Ab’’”) +

13 c.inv(10) +

14 c.stretch_interval(2).transp(2) +

15 c.inv(”G’’”) +

16 c.inv(”E’’”).stretch_interval(1) +

17 c.inv(”A”).stretch_interval(1)

18 )

19

20 a4 = a.stretch_dur(2).inv(6)

21

22 Part1 = A + NoteSeq(”C2”) + A2 + B

23 Part2 = C + a4

24

25 midi = Midi(1, tempo=90)

26 midi.seq_notes(Part1 + Part2, track=0)

27 midi.write(”midi/abstraction.mid”)

Finally, notice how we combine these motifs to form bigger elements.
We combine a, a1, a2, and a3 to formA (line 7). A2 is just a transposition
of A, and C is a bunch of c elements together. By abstracting compound
elements, we can name them (for instance,A) andmanipulate as an unit
(for example, A2).

Exercise 16. Study the code to understand how the excerpt was formed.
Make small changes and see how it sounds.

Exercise 17. Find the two wrong notes in the sheet music. If you did
Exercise 16 you may have noticed that two notes in the sheet music
don’t match the notes generated by the code. The reason is that I ac-
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tually wrote the music excerpt first, making the operations in my head.
I decided to leave these two mistakes because I like them better, and
to show that sometimes composers will make small deviations or muta-
tions from the original plan, either bymistake or guided by theirmusical
ear.

In the same way that throwing code in a class won’t necessarily make the
most useful and readable code, a music composition won’t necessarily
sound good just because we are using operations onmusicmaterial. The
music excerpt above sounds good (or at least decent if you’re hypercrit-
ical ;-) because it’s based on the same material (coherence), has some
repetition (A and A2), variation (A and C), and the melody has a focal
point (the Ab in measure 5) and a unique shape.

7.1 Example: Sergei Rachmaninoff, Vocal-
ize

Exercise 18. The following example is the 1912 composition Vocalize
by Sergei Rachmaninoff. Listen to it and try to recognize the repetitions
and how the piece is organized in sections. Also notice how he basi-
cally uses only one or two musical ideas in the whole piece and a few
operations we’ve seen so far. I won’t show a code implementation for
this song because it uses things we haven’t seen (tonal transformations),
and it’d be more complex. But feel free to try to implement the code to
describe its compositional process.
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Music engraving by LilyPond 2.14.2—www.lilypond.org

7.2 Conclusion

In this chapter we have only scratched the surface of abstracting com-
pound elements. This is a complex subject and the core of a music com-
position course. But hopefully you have seen how the music elements
we saw in the previous chapters can be combined tomakemusic. Check
out our resources webpage to see book recommendations.

7.2. Conclusion 73



CHAPTER 8

Conclusion and Next Steps

In this book we have used programming to learn more about music. We
saw the primitives of music and how to represent them with Python,
how to combine primitives into larger units with operations, and how
these primitives actually work from the inside.

It’s hard to recommend things if I don’t know your actual interest, but
I’ll try. Check this book’s resources webpage for more suggestions and
links:

• If you are interested in playing an instrument, try to incorporate
this knowledge in your instrument practice. For instance, can you
make operations like transposition and inversion in your instru-
ment?

• If you are interested in learningmore aboutmathematics andmu-
sic, you may want to learn post-tonal theory. Straus’ Introduc-
tion to Post-Tonal Theory is a good book. Also, Benson’s Music: a
Mathematical Offering is freely available.

• If you are interested in programming, check out Python libraries
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such as music21 or Mingus.

• If you are interested in doing research involving music, the In-
ternational Society for Music Information Retrieval Conferences
have a lot of good stuff. They have all proceedings available at
http://ismir2012.ismir.net.

• If you are interested in generating interesting sounds, Csound is
not a Python package (although it can be scripted in Python), but
you can have a lot of fun with it. I recommend Dodge’s Computer
Music: Synthesis, Composition, and Performance and Boulanger’s
The Csound Book.
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CHAPTER 9

List of Exercises

• Exercise 1

• Exercise 2

• Exercise 3

• Exercise 4

• Exercise 5

• Exercise 6

• Exercise 7

• Exercise 8

• Exercise 9

• Exercise 10

• Exercise 11

• Exercise 12
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• Exercise 13

• Exercise 14

• Exercise 15

• Exercise 16

• Exercise 17

• Exercise 18
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List of Tracks

• Track 1

• Track 2

• Track 3

• Track 4

• Track 5

• Track 6

• Track 7

• Track 8

• Track 9

• Track 10

• Track 11

• Track 12
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• Track 13

• Track 14

• Track 15

• Track 16

• Track 17

• Track 18

• Track 19

• Track 20

• Track 21

• Track 22

• Track 23

• Track 24

• Track 25

• Track 26

• Track 27

• Track 28

• Track 29

• Track 30

• Track 31
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